《植树问题》教学反思

时间:2024-07-14 11:54:26
《植树问题》教学反思

《植树问题》教学反思

作为一名人民教师,课堂教学是我们的工作之一,通过教学反思可以有效提升自己的课堂经验,怎样写教学反思才更能起到其作用呢?以下是小编为大家收集的《植树问题》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

《植树问题》教学反思1

“植树问题”是新课程标准实验教材四年级下册的资料,本课安排“植树问题”的目的在于向学生渗透复杂问题从简单入手的思想。

教材将植树问题分为几个层次:两端都栽、两端不栽、环形状况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助资料的教学发展学生的思维,提高学生必须的思维潜力。

我这节课教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。我在十几年前仅接触过一年小学数学教学,今参加赛课,感觉个性好,反思整个教学过程,我认为我执教的这节课整体是成功的。

首先,设计流畅简单易懂。

整节课设计基于我班学生实际状况,课前创设情境使学生明确要学习的资料,紧之后引出例题探讨植树问题,不规定间距,同时改小数据,将长度改成20米。目的在于,让学生在开放的情景中,突现知识的起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在那里改小数据,有利于学生的思考,主要照顾后20℅的学生。然后以例题展开,让学生动脑、动手反复验证,最终总结出:段数+1=棵数。这节课的设计依据了认知规律:透过例题感知间隔,以例题为载体突破教学重点难点,以生活中植树问题的应用为探讨对象,了解植树问题实质,多角应用拓展植树问题的认识。整节课条理清晰、层次分明、浅显易懂,始终围绕重点资料进行难点的突破。

其次,注重实践体验探究。

教学中,我创设了情境,向学生带给多次体验的机会,注重借助图形帮忙学生理解建构知识。在教学过程中,我时刻对数形结合意识的渗透。教学中我先激励学生自己做设计,想办法设计植树方案,在学生自主探索的`过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧之后提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面自己设计的植树问题:间隔2米、4米、10米,而栽树的棵数比段数(间隔数)多1。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。

再次,联系生活拓展思维。

有好处的学习是学生在具体情景中体验自主建构,体验和建构是学生学习的关键。体验是建构的基础,没有体验,建构就没有好处。体验是学生从旧知向隐含的新知迁移的过程。设计中,虽然创设了情景,但一次的体验不能到达继续建构学习的水平。所以,这节课我多次向学生带给体验的机会,而且创设能够激发学生共鸣的情境。从自身、教室、做操、楼房等身边熟悉的事物,引发学习兴趣,产生共鸣,激发探究欲望。

这节课虽扎扎实实,但问题也存在着。

一、针对学生能够找到简单植树问题的规律“棵数=间隔数+1”却无法运用这个规律求路长的问题,因为学生的认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的潜力,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,能够说说“间隔数=棵数—1,路长=间隔数X间隔长”等等知识的扩散。

二、把握每一个细节,问题即时解决,站在学生的角度去思考问题。

比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,就应思考学生的知识构建,学生的知识认知一般是在具体情景中透过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部到达继续建构学习主题的水平。我能够利用线段图或者实例来帮忙学生学习。让学生有能够凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。

《植树问题》教学反思2

“植树问题”是人教版新课程标准实验教材五年级上册第七单元数学广角中的问题,而这个内容以前是安排在四年级下册。在植树问题中,主要是教会学生如何思考,如何分析问题并且将这些知识能潜移默化的给大家以思考路线。

教材将植树问题分为三个层次:两端都栽、两端不栽和环形(一端不栽)。教学过程中需向学生渗透数形结合、探究推理和一一对应的数学思想,同时使学生将这一数学问题拓展,感知到这是一种数学额模型,可以提高学生的思维拓展能力。

我这节课主要解决的是两端都栽的植树问题,通过观察、操作及交流活动,探索并认识将问题探究推理的方式,并能将这种认识应用到解决类似的实际问题之中。运用数形结合的思想,培养学生借助图形解决问题的意识。并借助图形,利用一一对应的规律来解决实际问题。反思整个教学过程,我认为本节课有以下几点做得比较好:

首先,设计层次分明。整节课设计基于学生的实际情况,课前通过猜谜语的方式,吸引学生的注意力,然后通过探索手指数与间隔数的关系,人民大会堂前柱子数与间隔数之间的关系。通过这两个问题推理探究到新知识——植树问题。给与学生一个较大的数据,不能一眼就看出结果,但是能通过猜想假设,并运用一一对应的这种关系来得到对于两端都栽的植树问题得到植数棵树比间隔数多一。可是在这其中就包含了对于植树这一类的数学模型我们可以通过简化的线段图来简化思考过程,淡化图形意识。毕竟对于10多岁的小孩子,他们的潜意识还是以完整的图形思维为主,为了培养他们简化思考过程。其次,联系生活进行拓展思维。当学生体验到植树问题,但如何去将这种模型推广化就值得思考!体验是学生从旧知向隐含的新知迁移的过程。设计中,虽然创设了情景,但一次的体验不能达到继续建构学习的水平。所以,这节课我多次向学生提供体验的机会,而且创设能够激发学生共鸣的情境。从植树、路队、楼房、锯木等身边熟悉的'事物,引发学习兴趣,产生共鸣,激发探究欲望。

这节课虽然层次分明,联系实际, ……此处隐藏13775个字……时还是跃跃欲试的学生们到“探究规律” 时一个个都像被打败公鸡,毫无斗志与反应。勉强参与的总是那几个平时成绩比较优秀的学生。看来这样的设计无法顾及全体学生的发展。没有了学生的主体参与,何来思维的培养,主题的建构呢?我开始反思:为什么学生不能找到简单植树问题的规律呢?为什么缺乏参与的积极性呢?学生一脸的茫然。经过反复的思考,我想到了我设计的探究活动有一定的问题,对于学生来说太抽象,太难了,自己确定长度时,要考虑到平均分还要分完,只给学生一条线段,他们不知道从何下手。我请教有经验的老师们,自己又反复琢磨,调整了自己的教学过程,从简单入手的思想,使这节课主线更清晰明朗了,即从生活中抽取植树现象,并加以提炼,然后通过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。这样能灵活构建知识系统,注重教学内容的整体处理。又能活用教材,对教材进行了整合和重构,让资源启迪探究。激发了学生探究的欲望。让学生比较系统地建立植树问题的三种情况,即两端都植;两端都不植;封闭情况下的植树问题(一头植和一头不植)。

三、第二次试教分析:

我把目标制定为:知识性目标:利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。过程性目标:进一步培养学生从生活实际问题中发现规律,应用规律解决问题的能力。

为了让学生掌握物体个数与间隔数的关系,课前我布置学生去数一数路灯排列有什么规律,初步感受物体个数与间隔数的关系,这样首先让学生在生活中学会有所观察,有所思索,有所实践。既能激起学生强烈的求知欲,做好课前准备,又能体会到数学知识在生活中的实际应用价值。在教学过程中,我创设情景聘请学生做环境设计师,说明学校南墙边有一段40米的小路,学校准备在路的一侧种树,按照每隔10米种一棵的要求设计一份植树方案,并说明设计理由,择优录用。我先请学生估计产生不同的意见,此时需要验证,怎样验证,学生想出不同的办法,给学生动手操作的时间和空间,让学生在操作中感悟,学生通过摆一摆,数一数,得出结果。学生的思绪一下打开了,最后出现了三种方案:第一种,两头都种,有5棵数。这样可以让学校有更多的绿色。第二种有3棵,头尾都不种。因为节约成本。第三种有4棵。种头不种尾;或者相反;又或者考虑树的实际生长空间不够,成本既不太高,绿色又不会太少。在这个环节,学生在实际操作中初步感受植树问题的特征,这个时候我利用模具加以归纳、总结,形成规律。学生靠自己主动、独立地完成所学任务,发现规律,发现特点,找到窍门,感到非常高兴,记得牢固。

但是问题又就出现了,在和学生开始列举生活中有关植树的问题的事情,然后运用学生自己发现的规律,解决插彩旗,仪仗队队伍的长度、走楼梯、锯木头等问题。为什么学生能够找到简单植树问题的规律“间隔数+1=棵数”“间隔数-1=棵数”却无法运用呢?在发现规律与运用规律间缺少了怎样的链接?

四、第三次试教分析:

首先,创设了情境,学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。不仅需要向学生提供多次体验的机会,而且还需要创设能够激发学生共鸣的情境。在举例过程中,比如手指之间的点段,座位之间的位置关系,并且还利用了“一刀两断”来说明锯木头的问题,让我惊喜不已。学生真正的生活经验是他们身边熟悉的事物,这时的学生才会真正感兴趣,才能够产生共鸣,才易激发探究的欲望,让活动化的数学学习有个坚实的基础。

其次,书上的例题直接给出了植树的图片,棵数、段数一目了然,不利于学生进行独立的、深入地思考。如果在动手之前,再补充一句:根据题目要求,你想怎么种?有几种种法?画一画线段图或者用手边的东西代替树摆一摆。再出示3种植法的图片,学生证实自己的考虑是全面的。这样的设计会使学生的印象更加深刻。借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有凭借,才能使得数学学习的思想方法真正得以渗透

五、反思:

1、通过自主探索的活动,让学生获得学习成功的体验,增进学好

数学的信心。

结合学生的年龄特点和教学内容,我设计了很多需要学生自主探索的活动。例如:在创设情境、导入新课的第2个小环节中“如果你是园林工人,你会怎么种?”,让学生自主探索出在一条路上植树时,有3种不同的情况:“两端都种”“两端都不种”“只种一端”;再如:在自主探究、建立模型这一环节中让学生自定路长和间距,通过画图的方法验证“间隔数”与“棵数”之间的规律。又如:在最后联系实际,综合练习时,我放手让学生自选习题进行解答。

2、渗透“以小见大”的数学思想方法,培养学生数学思维能力和解决问题的能力。

“授人以鱼不如授人以渔”,新课程理念有个更具“与时俱进”的显著特点是对渗透数学思想方法的关注。在本课的教学过程中,要充分利用学生想检验大数目时遇到困难,可引导通过“以小见大”来找规律加以验证,让学生通过观察、猜测、实验、推理与交流等活动。从而不失时机给学生渗透常用的数学思想方法,为将来的后续学习积累更丰富实用的思想经验。

教学过程是这样的:在学生已经掌握了两头都植的规律的探究方法后,让学生分组自主寻找两头都不植的规律,学生通过自己动手画,自己整理表格,很快就发现了其中蕴含的规律,产生了很强的成功感,同时也有了一份自信,极大的调动了学生积极性。

3、关注植树问题模型的拓展和应用,注意反映数学与人类生活的密切联系。

《植树问题》教学反思15

本节课旨在通过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,积极性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:

一、动手操作、合作交流、探究规律:

本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的形成,提高了学生的思维水平,完善了学生的认知结构。

二、练习的设计独特、新颖、有梯度:

本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的.练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。

由于练习的解答采取竞赛的方式,充分调动了学生学习的积极性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)

三、充分体现学生的主体作用及教师的主导作用:

本节课,我通过引导学生动手操作(模拟植树)——交流讨论(植树方案)——得出结论(三种植树问题的解决方法)——应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。

《《植树问题》教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式